Skip to main content

  • Tuesday, February 6, 2018
  • 13:45 - 14:15

Dutta (KAUST): Online and Batch Supervised Background Estimation via L1 Regression

We propose a surprisingly simple model for supervised video background estimation. Our model is based on L1 regression. As existing methods for L1 regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures.